

Protocol Conformance Testing for 4G/5G soft-UEs

Andre Puschmann, Paul Sutton, Ismael Gomez

Agenda

- Introduction
- What's srsLTE and srsUE?
- srsUE Protocol Conformance Testing

The Standards People

An off-the-shelf handset

- Sandisk SDIN8DE4 16 GB NAND flash
- Qualcomm WTR1605L LTE/HSPA+/CDMA2K/TDSCDMA/EDGE/GPS
- Qualcomm PM8841 power management IC
- Broadcom BCM4339 5G Wi-Fi combo chip with integrated power and low-noise amplifiers (the updated version of the BCM4335).
- Avago RFI335
- InvenSense MPU-6515 six-axis (gyro + accelerometer) MEMS MotionTracking device
- Asahi Kasei AK8963 3-axis electronic compass

A Software Defined Radio

The srsLTE Eco-System

- Core 4G/5G library
 - Modular and portable, high-performance library for PHY, MAC, RLC, PDCP, RRC, NAS, S1AP, NGAP, SDAP and GW
 - All bandwidths up to 20 MHz, TM1-4
 - Highly optimized Turbo decoder for Intel SSE4.1/AVX (+150Mbps in TM3/4)
- Applications
 - srsUE: First open-source SDR LTE UE
 - srsENB: A complete SDR LTE eNodeB application
 - srsEPC: A light-weight LTE core network
 - airScope: passive air-interface analyzer (not FOSS)

"Open-source 4G/5G software radio suite"

www.srslte.com

A Full E2E Open-Source Open LTE Solution

Security

> Home > GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Mobile Security Hall of Fame

CVD-2018	0007	Altaf Shaik	Technical University of Berlin and Kaitiaki Labs https://www.isti.tu-berlin.de/security_in_telecommunications
CVD-2018	0007	Ravishankar Borgaonkar	SINTEF Digital and Kaitiaki Labs https://www.sintef.no/en/cyber-security/#/
CVD-2018	0008	David Rupprecht Katharina Kohls Christina Pöpper Thorsten Holz	Ruhr University Bochum and New York University Abu Dhabi https://www.alter-attack.net
CVD-2018	0012	David Basin Jannik Dreier Lucca Hirschi Saša Radomirović Ralf Sasse Vincent Stettler	ETH Zurich, Université de Lorraine CNRS, Inria, University of Dundee https://arxiv.org/abs/1806.10360
CVD-2018	0014	Elisa Bertino	Purdue University https://www.cs.purdue.edu/homes/bertino/
CVD-2018	0014	Omar Chowdhury	University of Iowa http://homepage.divms.uiowa.edu/-comarhaider/
CVD-2018	0014	Mitziu Echeverria	University of Iowa
CVD-2018	0014	Syed Rafiul Hussain	Purdue University https://relentless-warrior.github.io/
CVD-2018	0014	Ninghui Li	Purdue University https://www.cs.purdue.edu/homes/ninghui/

Security

> Home > GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Mobile Security Hall of Fame

CVD-2018	0007	Altaf Shaik	Technical University of Berlin and Kaitiaki Labs https://www.isti.tu-berlin.de/security_in_telecommunications
CVD-2018	0007	Ravishankar Borgaonkar	SINTEF Digital and Kaitiaki Labs https://www.sintef.no/en/cyber-security/#/
CVD-2018	0008	David Rupprecht Katharina Kohls Christina Pöpper Thorsten Holz	Ruhr University Bochum and New York University Abu Dhabi https://www.alter-attack.net
CVD-2018	0012	David Basin Jannik Dreier Lucca Hirschi Saša Radomirović Ralf Sasse Vincent Stettler	ETH Zurich, Université de Lorraine CNRS, Inria, University of Dundee https://arxiv.org/abs/1806.10360
CVD-2018	0014	Elisa Bertino	Purdue University https://www.cs.purdue.edu/homes/bertino/
CVD-2018	0014	Omar Chowdhury	University of Iowa http://homepage.divms.uiowa.edu/-comarhaider/
CVD-2018	0014	Mitziu Echeverria	University of Iowa
CVD-2018	0014	Syed Rafiul Hussain	Purdue University https://relentless-warrior.github.io/
CVD-2018	0014	Ninghui Li	Purdue University https://www.cs.purdue.edu/homes/ninghui/

Towards srsUE Protocol Conformance Testing

- Motivation
 - Protocol and signaling conformance to 3GPP specifications
 - Interoperability
 - Regression testing
 - Extend current in-house testing
- Challenges
 - Very dynamic code base
 - Only interested in L2/L3 testing (full UE is out of scope here)
 - Integration into Cl is a must

Typical Test Systems Don't Fit

- Too big, expensive, heavy and noisy
- No protocol-only testing
- Bad support for older devices

Eclipse TITAN

- Complete, full-featured TTCN-3 toolset developed by and widely used within Ericsson
- Released under Eclipse Public License (EPL) 1.0 in 2014
- Command line tools for compiling, executing and analysing functional and performance tests (generates native C++ code for GCC)
- Built-in codec generators for ASN.1 BER, JSON, XML, RAW
- GUI plugin for Eclipse with Executer and LogViewer
- Many testports also available under EPL 1.0 (e.g. TCP/UDP, telnet, SCTP, PCAP, SIP)
- 1.6 MLoC C++, 3kLoC in Java

Solution: Port 3GPP UE Testsuite to TITAN (+srsLTE)

Goals:

- Develop SW to use 3GPP tests to test higher protocol layers of srsUE
- Full CI/CD integration to execute with every pull-request

Steps:

- Declare testports (TTCN-3 to SS to DUT)
- Implement codecs (e.g. ASN1 BER to PER converter, decorate type definitions for RAW codec)
- Implement external function (e.g. security)
- Design+Implement SS and soft-PHY for DUT

System Architecture

Minor Modification

Major Modification

From Scratch

Unmodified

The NAS Codec Dilemma

- Titan (<= 6.3) incapable of decoding NAS PDUs (from ETSI test suites)
- RAW codec cannot generate unpacker for mandatory fields in, e.g.,
 ATTACH_REQUEST, with format LV (length and value but no type)

- Ericsson provided internal EPS-NAS Definitions as 1st solution (now FOSS)
- Dilemma: Use those new types or make code generator work
- SRS filed bug, sketched possible solution and provided working hack
- Ericsson provided fix for RAW codec with new FORCEOMIT keyword

CI/CD Integration

 Pull-request hook in Github

- Executed in Jenkins
 - Podman containers running TITAN and srsUE
 - Result collection with per-TC TITAN log and srsUE log and PCAP

Conclusion and Results

- Basic SS and DUT under AGPLv3 in srsLTE 19.09
 - Unmodified srsUE upper layers
 - Complete RRC/NAS test model
 - MAC/RLC/PDCP model work-in-progress
 - 5GNR EN-DC Inter RAT work-in-progress
- Full CI/CD integration
- TTCN-3 tester/testports, protocol codecs, security helpers, 3GPP testsuite patch for TITAN not FOSS (License for ETSI code?)

Sources and Further Reading

- https://www.netdevconf.org/2.2/session.html?welte-ttcn3-talk
- http://www.ttcn-3.org/
- https://dl.cdn-anritsu.com/en-en/test-measurement/files/Product-I ntroductions/Product-Introduction/me7873l-el11300.pdf
- http://www.sharetechnote.com/html/LTE_Protocol_CT.html
- "Assessing Compliance of 5G Device Implementations To 3GPP Standards" by Olivier Genoud, ETSI (https://docbox.etsi.org/Workshop/2018/201812_ETSI_OAI/WORK SHOP/SESSION03/ETSI_GENOUD.PDF)
- https://www.3gpp.org/ftp/tsg_ran/WG5_Test_ex-T1/TTCN/Deliveries/TTCN3/

User Conference on Advanced Automated Testing

Thanks!

Backup slides

EUTRAN Test System Architecture

Figure 4.1.1-1: Architecture of system simulator

Source: TS 36.523 v8.6.0

srsLTE Testing (1)

- Static code analysis (SA)
 - Using Coverity and cppcheck
- Unit tests (UT)
 - Executed periodically in AWS Jenkins (i.e. make test)
 - Mostly PHY layer, and partly common (e.g. RLC)
 - Very limited for UE upper layers, (almost) non for eNB/EPC
 - Valgrind checks and address sanitizer runs (ctest memcheck)

srsLTE Testing (2)

- RF Conformance (TS 36.521)
- Protocol Conformance (TS 36.523)
 - 3GPP has defined entire conformance test architecture and conformance test cases based on TTCN3
- Pre-IOT Testing
 - RF continuous-integration (RF-CI)
 - Customer
- Interoperability Testing (IOT)
 - Carried out manually in the field in a live network

