
Self-Optimization of Software Defined Radios
Through Evolutionary Algorithms

Zubair Shaik, André Puschmann and Andreas Mitschele-Thiel
Integrated Communication Systems Group, Technische Universität Ilmenau, Ilmenau, Germany

Email: [zubair.shaik, andre.puschmann, mitsch]@tu-ilmenau.de

Abstract—This paper presents a framework for building
software-defined radios that are able to self-optimize their pa-
rameters using evolutionary algorithms. The framework has been
implemented using the DEAP library for Python, which is based
on the Genetic Algorithms (GAs). The paper discusses the overall
system architecture and presents a system prototype that has
been employed to optimize radio transmission parameters in an
unknown radio environment in order to maximize the achievable
throughput. Although GAs have been used before for optimizing
the radio parameters of Software Defined Radios (SDRs), they
have been limited to the number of parameters given as an input
to the GA. The proposed algorithm is much more generic and
comprehensive to utilize the advantages of genetic algorithms,
by providing the flexibility to include any of the parameters
of the configuration of the SDR, which needs to be optimized
through the GA. Moreover, the entire project is based on open-
source solutions. The current prototype targets Iris-based SDRs.
However, as the entire software employs standard components
for interfacing the SDR, it can easily be ported to GNU Radio
or other SDR frameworks. We will also present preliminary
results that have been obtained through over-the-air experiments
in which we optimized different power parameters, modulation,
coding schemes, etc., in an unknown radio environment.

Keywords—Software Defined Radios (SDRs), Distributed Evo-
lutionary Algorithms in Python (DEAP), Iris, Genetic Algorithms
(GAs), Multi-Objective Genetic Algorithms (MOGA)

I. INTRODUCTION

Wireless communication systems are built in a layered
fashion comprising a multitude of protocols and services. The
wireless signals are too volatile to its surroundings and to
figure out the optimal working conditions is a challenging
task. Software defined radios (SDR) provide the flexibility to
implement these different services on a software platform, be
it the physical layer modules of modulation and coding or the
MAC layer protocols. The configuration space of an SDR is too
huge, and it becomes difficult for a regular user to figure out
a good working set of these settings. We utilize the flexibility
of an SDR to create a self-optimizing radio that intelligently
adapts to its surroundings and works in an optimal scenario.

Generally, too many parameters guide the working of a
wireless radio. The solution space includes many possible
combinations of the parameters that govern the wireless radio,
like frequency, bandwidth, transmit/receive power, modulation
and coding schemes, gain values etc. These parameters could
exist from the application layer to the MAC and physical layer.
The number of combinations of these parameter values would
be in millions and an exhaustive search would take years to
figure out the best possible combination. The objective of the
cognitive radio is to find tractable solutions for optimizing the

radio link but in a desired time applicable to the user. Various
algorithms have been proposed over the years to optimize
the parameter configuration. Doerr et al. [1] classified these
algorithms into four main categories: genetic algorithms, game
theory, rule-based reasoning and neural networks. We choose
genetic algorithm as it is good for large solution space and
gradually evolves its solution set based on the experiences
during its evolution.

This paper focuses on the self-optimizing radio which
employs genetic algorithm to adjust its radio parameters.
The radio engine developed is based on the following open-
source solutions: (1) DEAP [2], an evolutionary computation
framework for Python, (2) Iris [3], an application framework
for building reconfigurable SDRs, and (3) OSPECORR [4], a
middleware used to connect the individual software compo-
nents together. An early prototype of the platform has been
presented as a talk at FOSDEM 2016 [5].

The remainder of the paper is sectioned as follows: In
Section II, we briefly describe genetic algorithms and give an
overview about multi-objective decision making. Section III
describes the application of GAs to software defined radios.
Section IV-A presents the design and the component structure
of the proposed system, while describing the employed genetic
algorithm using DEAP. Section V contains the experimental
results of the algorithm. Finally, we summarize our findings
and conclude the paper in Section VI.

II. GENETIC ALGORITHMS

Genetic algorithms (GAs) are heuristic search algorithms
inspired by biological observations. They adapt based on
the evolutionary ideas of natural selection and genetics. As
such, they belong to the class of evolutionary algorithms. The
techniques used in GAs are based on the natural evolution,
such as selection, mutation, crossover, and inheritance. These
heuristics are frequently being used for optimization problems,
as they exploit the information during their evolution to direct
the search into a solution space that generally gets better each
time. In particular, where the state space is large, multi-modal
or a n-dimensional surface, GAs provide significant optimiza-
tion solutions when compared to typical search techniques such
as depth-first, breadth-first or praxis [6].

GAs are based on two components. The first component
is the genetic representation of the possible solution space,
the so-called chromosomes. This physical representation of
a particular solution of the algorithm is modeled through
bit strings of variable length that contain the value of each
parameter, i.e., the gene. The second component is the fitness

1

function that evaluates each solution set. It can be a simple
formula or a statistic from a complex simulation.

The algorithm starts by randomly generating an initial
population, which is a pool of individual potential solutions.
It evolves through three basic operators of selection, crossover
and mutation. Selection involves giving preference to indi-
viduals, which allows their genes to be passed on to their
future offspring. Each individual is associated with a fitness
value that can be determined by the fitness function. This
ensures that the individuals with a good fitness value quickly
dominate the population. Mutation and crossover are variation
operators used to create different children, but still related to
their parents. Mutation is done to one individual at a time, and
involves bit flipping of their bit strings, where as crossover
operator takes two or more parents to make a child which is a
combination of them. The probability values of crossover and
mutation are given as inputs to decide the intensity of variation
of the offspring. Survivor selection mechanisms based on the
fitness and age of the parents and offspring determine which
individuals are carried on for the next generation.

The GA, using the operators of selection, crossover, and
mutation gradually evolves through generations to converge
towards a global optimum solution [7]. A termination condition
has to be applied to the genetic algorithm, to prevent it from
an infinite or an exhaustive search. The termination condition
can be based on the number of generations or an fitness
threshold. This could be either an absolute value or when
there is minimal change in the fitness values of the population.
Figure 1 illustrate the basic process flow of a GA.

Population

Parents

Offspring

Initialization

Termination

Parent selection

Survivor selection

Mutation/
Crossover

Figure 1. GA process flow (adopted from [8]).

GAs have been mainly applied to problems with a single
objective. However, most of the real-world problems are multi
objectives. For example in the case of wireless communication
systems, it’s not always the maximum throughput alone that’s
an objective, but along with it, the transmit power, frame
error rate, etc., also need to be considered. In Multi-objective
Genetic Algorithms (MOGA) [7], weights can be attached
to the individual objective functions, directing the results to
achieve the maximum/minimum values as required.

To give an example, consider two objective functions of
a GA, f1(·) and f2(·). Further assume that f1(·) is to be
maximized and f2(·) to be minimized. In order to optimize
for both objectives, MOGA uses a weighted sum of multi-
objective functions to form one scalar fitness function. With the
search evolving in different directions, a set of Pareto-optimal
solutions are achieved, with individuals of high fitness values
selected from each set to form the elite of the next generation.
Pareto optimality is a state of allocation of resources where
any change beneficial to one individual is detrimental to one

or more others. When no further pareto improvements can
be made, an allocation is called Pareto-optimal [9]. Figure 2
illustrates the direction of search of a MOGA with four non-
dominating solutions, all laying on the Pareto front.

Non-dominated
solutions

ƒ
1
(•) : to be maximized

 ƒ
2
(•) : to be minimized

0

Figure 2. Directions of the search in MOGA (reproduced from [7])

III. APPLICATION OF GENETIC ALGORITHMS TO SDRS

For a successful wireless transmission, the radio must be
configured according to the channel conditions. The channel
conditions are very diverse in nature and the impact of them
on the radio transmission is very unpredictable. Numerous
solutions have been proposed over time to stabilize the radio
transmission, which includes better modulation and coding
techniques, the use of right power and gain values, frequency
selection, symbol rates etc. Looking at the huge solution space,
it turns out to be a very daunting task to figure out which
configuration works best. The idea is to let the GA decide and
figure out the optimum solution.

By providing the range of feasible values for all the
parameters that effect the radio transmission, even in an un-
known radio environment, the algorithm takes a comprehensive
control and starts the optimization process through gradual
evolution. The time required to arrive at a good optimum
solution is directly proportional to the solution space.

The parameters of both the transmitter and the receiver
that are to be optimized form the genotype of an individual,
as shown in Figure 3. Note that the genes of the chromosome
may have different lengths, depending on how many feasible
values exist per parameter.

The initial set of individuals are randomly generated by
assigning random values to each of the parameter from their
corresponding solution sets. Traffic conditions of the radio
transmission govern the fitness evaluation function of the GA.
The termination condition is controlled by the evolved number
of generations. The parameters of the GA, like number of
individuals, number of generations, the crossover and mutation
probability are configurable, so as to let the user control the
GA as required.

Probably among the first to apply GA to SDRs were
Rieser and Rondeau. Rieser et al. [10] provide a cross-layer
mechanism to deliver the requested Quality of Service (QoS)
through Cognitive System Monitor (CSM), by controlling

2

parameters like power, frequency, modulation type, FEC and
TDMA timeslot ratios. Building upon that work, Rondeau et
al. [11] point in the direction of controlling more parameters
by providing dynamic fitness selection and evaluation. Their
proposed Wireless System Genetic Algorithm (WSGA) is a
MOGA based algorithm to realize cross-layer optimization of
a radio. The parameters of PHY and MAC layer form the genes
of a chromosome, and their analysis is done through fitness
functions defined by evaluation of the radio channel. These
fitness functions are dynamically linked from the database,
so as to add and weigh them in the fitness function for the
evaluation of the wireless link.

The algorithm proposed in this paper is inspired by Ron-
deau et al. [11]. It extends the dynamic functionality by in-
cluding not just the fitness function but the configuration space
as well. Any configurable parameter of the SDR, be it from the
application, MAC, or PHY layer, can be dynamically included
to form the chromosome of the individual. Furthermore, be-
cause it’s not just the radio properties of the transmitter that
affect the wireless link, the receiver functionality too has to be
optimized. The current algorithm includes the configuration
of the transmitter as well as the receiver in the chromosome
and optimizes both of them simultaneously to achieve the best
results.

Very recently, Kozel [8] has employed GAs to optimize
digital modulation schemes, i.e., to find a constellation that
works best for the given radio conditions. However, this work
is only based on simulation and does not consider any over-
the-air experiments.

g
0

g
1

g
20

g
21

g
22

g
23

g
24

g
N-6

g
N-5

g
N-4

g
N-3

g
N-2

g
N-1

Frequency Modulation

Transmit Power

220 = 1x106 Values 24 = 16 Values

26 = 64 Values

Figure 3. Representation of a chromosome containing genes with a variable
length (reproduced from [12]).

IV. SELF-OPTIMIZATION FRAMEWORK

This section presents the proposed framework for enhanc-
ing existing SDRs in order to allow them to self-optimize their
communication parameters in real-time. We will first explain
the high-level system design and then provide details about
our prototype implementation based on Iris.

A. System Design

The system architecture consists of two main components:
the optimizer client and the optimizer controller, as shown in
Figure 4. The client and the controller represent the transmitter
and the receiver of the radio link respectively. The optimizer
controller is the basic component that governs the complete
process of optimization. The client is a passive module follow-
ing the protocol set by the controller, executing its commands,

and sending back the requested statistics. The controller has
been developed in a way that it can be run independently
from the transmitter and the receiver, e.g., on a different host
machine.

The optimizer controller and client are connected over
separated control and data interfaces. This has two main
advantages. First, signaling messages sent over the control
interface do not negatively effect measurements on the data
interface. Second, and more importantly, a separated control
interface allows to also configure radio parameters that result
in a non-working communication link - something that may
happen anytime during the optimization - without having to
worry about how to detect and repair such a situation during
the optimization procedure.

To evaluate the fitness level of each configuration of the
individual, the results of the data transmission are to be
computed. nuttcp tool which is used to generate the data
traffic provides the results of the data transmission in terms
of throughput. OSPECORR provides the means to collect the
physical or MAC layer properties like EVM, RSSI, etc., which
are accumulated through the time of data transmission. These
computed results are sent to the optimizer controller through
the control interface.

Figure 4 illustrates the core building blocks of the system
as well as the specific components used for the prototype
implementation, which is described below.

Data

over
SDR Receiver

RTLRXB210

Control

over
(W)LAN

Iris

Tun/Tap

nuttcp

Iris

Tun/Tap

nuttcp

Transmitter

Optimizer
Controller

DEAP

Optimizer
Client

Figure 4. System Design

B. Principle of Operation

The message sequence chart of the controller protocol is
shown in Figure 5. The optimization starts by opening a TCP
connection between the optimizer controller and the optimizer
client, over the control interface. The optimizer controller
configures the client with the required settings for the data
transmission of nuttcp and initiates the GA to continue its
evolutionary process. During the GA, the controller is tasked
with configuring the settings of each individual on the client,
to signal the data transfer and then to collect the results of the
data transmission. When the termination strategy decides the
end of optimization, the controller configures the best selected
configuration and terminates the optimization.

The GA itself is realized by leveraging DEAP, an "evo-
lutionary computation framework for rapid prototyping and
testing of ideas" [2]. The algorithm initially registers the mod-
ules required for the GA, like individual, population, evaluate,

3

Client basic configuration

Optimizer
Controller

Optimizer
Client

TCP socket connection

Configure the individual of GA

Signal to start the data transfer

Results of the data transmission

Data traffic through nuttcp

Configure the best individual

Loop

Control
Interface

Data
Interface

End of optimization

Figure 5. MSC of the optimization protocol

Table I. DEAP OPERATORS

GA Parameter DEAP Operator

Individual initCycle
Population initRepeat
Mutation mutFlipBit
Crossover cxTwoPoint

Select selNSGA2

mate, mutate, and select. Table I shows the operators used
through the evolutionary tools of DEAP. All the modifiable
parameters which are to be optimized form the genotype of an
individual, as mentioned in Figure 3. DEAP provides a sorting
based multi-objective evolutionary algorithm called as Non-
dominated Sorting Genetic Algorithm II (NSGA2). NSGA2
alleviates the main problems faced by MOGA, which are
computational complexity, nonelitism approach, and the need
for specifying the sharing parameter, as explained by Deb et
al. [13]. Their results prove that NSGA2 is able search better
solutions towards the optimum pareto front.

The algorithm starts its run by creating a set of individuals
by randomly selecting the parameter values in their geno-
types and calculating the fitness of each individual. After the
initialization, the evolution procedure begins, going through
the mechanism of crossover and mutation of the offsprings
and computing their fitness. The evolution continues till the
terminate function decides to stop the evolution. In every
evolution, a set of offsprings are formed by copying the
individual chromosomes from the current generation. The
selection procedure from the parents is based on NSGA2, as
described before. In this algorithm, an equal number of off-
springs are generated as that of parents. These offsprings now
go through variation operators of mutation and crossover, to
create individuals with different properties, but which are still
related to their parents. In crossover, individuals are created
by a combination of chromosome bit-strings of two parent
individuals, by calling the mate operator. The offsprings then
go through the mutation operator, which flips the bit-strings
of their chromosomes to make new individuals. Crossover
and mutation probability parameters decide the intensity of

variation.

Fitness values of these newly created offsprings are calcu-
lated and they go through the selection phase of NSGA2 again.
The population for the next generation is created by selecting
the individuals among the parents and the offsprings, which
have the best fitness values. The next step is the termination
test, which decides if the evolutionary process has to be
stopped or continued. In our algorithm, we stop the process
after a fixed number of generations as selected by the user. But
the logic can be extended to include conditions like, minimal
change in the fitness values of the best individual in each
generation, or until an absolute fitness threshold is reached.
If the termination test is not met, the process continues to
create new generations.

C. Prototype Implementation

The prototype system consists of a uni-directional com-
munication link between a SDR transmitter and receiver. We
employ Iris as the underlying SDR framework and utilize the
reconfigurability to allows the GA to reconfigure the radio
parameters during run time. The optimizer controller is an
extension of the Python-based pySysMoCo module of OS-
PECORR [4]. pySysMoCo is a graphical application to monitor
and control various parameters of the SDR. In particular, this
allows to select the parameters and settings for the optimization
algorithm through a graphical user interface. Furthermore, it
allows to display the fitness of the optimization while it is
running.

Figure 6. Configuration of the algorithm through the controller GUI.

Figure 6 shows a screenshot of the controller settings of
pySysMoCo. It allows to select the parameters and their range,
i.e., the possible values that each parameter can have, for the
transmitter and receiver independently. Note that certain pa-
rameters, like operating frequency, number of subcarriers, etc.,
need to have identical values for both the transmitter and the
receiver to work properly. The implemented protocol, however,
intelligently handles such conditions as well. Furthermore, the
GUI also allows to set the IP addresses of the controller and

4

client interface as well the core parameters of the GA, e.g.
mutation rate.

The fitness of the system evaluated by generating constant
bit rate UDP traffic using nuttcp. Throughput and data loss
form the two objective functions of fitness evaluation, with the
former to be maximized and the later to be minimized. In ad-
dition to that, we also employ error vector magnitude (EVM),
a physical layer metric to quantify the performance of a digital
communication system, as an additional objective function.

For the fitness value computation, the optimizer controller
sends a frame to the optimizer client over the control interface,
to execute nuttcp with the specified configuration. After the
nuttcp has finished, the optimizer client sends the results to
the controller. The controller then computes the fitness value
of each individual in the population.

In our prototype, the control interface is a realized over a
TCP connection over WLAN. The data interface represents the
wireless connection that needs to be optimized, i.e., the SDR
link.

V. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of the GA, we have
carried out a large number of experiments in our lab. For all
experiments discussed in this paper, we employ a USRP B210
on the transmitter side and a RTL-SDR dongle on the receiver.
The RTL-SDR is based on the Realtek RTL2832U chip,
an inexpensive USB dongle which has a highest theoretical
sample rate of 3.2 MS/s.

Table II. ADAPTABLE PARAMETERS OF SDR

Tx/Rx Parameter Range

Tx Modulation bpsk, ook, dpsk, apsk16, apsk 32, qpsk, ...
Tx Coding none, rep3, rep5, h74, ...
Tx software gain -20 to 0 in steps of 2
Tx usrptx gain 50 to 90
Rx rtlrx gain 0 to 10

Table II shows the adaptable parameters selected on the
transmitter and receiver configuration to run the experiment.
The first column represents if the configuration is of the
transmitter or the receiver, whose parameter configuration is
handled accordingly by the optimizer controller.

In general, the GA is able to include any of the exposed
radio parameters in the optimization procedure. In our ex-
periments, however, we limited the number of parameters to
those mentioned in Table II. Some of those parameters, if
configured on transmitter, the same value has to be configured
on the receiver too. The optimizer algorithm checks for such
parameters and configures them accordingly.

The list of modulations and coding is much more than
what is mentioned in the table. As has been mentioned above,
in order to evaluate the fitness we consider the data throughput
acquired by running nuttcp as well as the EVM obtained
from the physical layer. Of those two functions, throughput
represents the function to be maximized and the absolute value
of EVM is to be minimized. For the multi objective selection,
throughput is given the higher weight than that of EVM. To
calculate the baseline to be used later for comparison, we
manually configure the radio to use 16-QAM as modulation

μ=5%
μ=50%

Th
ro

ug
hp

ut
 [M

bp
s]

0

0.5

1

1.5

2

2.5

3

Time [s]
0 1000 2000 3000 4000 5000

Figure 7. Fitness of each individual generation over time as a function of
the mutation rate (µ).

scheme and known values of power and gain. With this setup,
we were able to achieve a maximum throughput of 1.7 Mbps.

Table III. GA PARAMETERS

Parameter Values:Set 1 Values:Set 2 Values:Set 3

Mutation Rate 5% 25% 50%
Crossover Rate 90% 90% 90%
Population Size 30 30 30

Max Generations 30 30 30

The parameters of GA used in the experiments are men-
tioned in Table III. They are those used in [11]. But we run the
experiments by increasing the mutation probability in each run.
This allows for the increase in the variation of the offsprings
from their parent chromosome, to discover better solutions.
Initially, we run the experiment based on the parameter values
from the column of set 1 and 3. In this experiment, the
algorithm focuses on maximizing the fitness function of just
the throughput.

Figure 7 shows the throughput values of the individuals
produced in each generation over time. It can be observed that
with a lesser probability of mutation, the throughput values of
the individuals are less scattered, and stay close to that of their
parents. In the initial stages, the throughput of the individual
with the best fitness value, increases by a good amount, but
starts saturating with the increase in time, leading us through
the termination condition.

Although the test stops after 30 generations, we can observe
that the high throughput has been attained in the halfway of
the process. But with an increased mutation probability of
50% from the set 3, the algorithm tries with more variation in
the radio parameter values while getting different throughput
results than that of the parents. But each generation when
formed consists of the elite individuals from the set of parents
and the offsprings. Such a case, with a higher rate of mutation,
allows variation in the parameter values, figuring out the
results of some radio parameter combinations that could have
been missed. Although in this experiment, both runs produce

5

μ=5%
μ=25%
μ=50%

Th
ro

ug
hp

ut
 [M

bp
s]

2

2.5

3

3.5

4

4.5

No. of generations
0 5 10 15 20 25 30

Figure 8. Fitness of the best individual after each generation over time as a
function of the mutation rate (µ).

the same maximum throughput of 3 Mbps. The experiment
takes beyond 5000 s to run for 30 generations, and that is
because of nuttcp’s timeout whenever the algorithm does not
produce an useful configuration, i.e., produces 100% packet
loss. The transmitter waits for a relatively long amount of time
before trying out the next solution. This does not affect the
optimization as such but can be changed by either modifying
the timeout value or by using another application for traffic
generation.

In the next experiment, EVM was included along with
throughput in the fitness functions. This experiment was run
based on all three parameter sets of the GA from Table III.
Figure 8 shows the throughput values of the best individual
in each generation. To compute the theoretical maximum
throughput for the setup used in the experiment seems difficult.
Comparison with other systems/approaches is difficult too
because most radios use very different system parameters,
i.e. bandwidth, frequency, available modulation and coding
schemes, etc. Using the lower sample rate of RTL-SDR of
3.2 MS/s among the two radios and with a spectral efficiency of
2 bit/s/Hz the optimistic maximum throughput can be derived
to be 6.4 Mbps. In the first run, with a mutation probability of
5%, a maximum throughput of 3.2 Mbps was achieved, which
had 16-QAM as the selected modulation scheme in its solution
space. By increasing the probability to 25% from the set 2, the
algorithm acquired a maximum throughput of 4.3 Mbps. In this
case, V29 was selected as the modulation scheme to achieve
such high throughput. Even in the previous run of 5% mutation
probability, V29 was tried among its individuals, but the right
combination of gain values was probably not selected.

The last run had a 50% mutation probability, which resulted
in 4.67Mbps of throughput. Even this run selected V29 as its
modulation scheme solution, but by attempting different values
of gain, it was able to achieve such higher results. Increasing
the mutation probability beyond 50%, did not result in an
increase in throughput anymore. We also observe that in all
three cases, a very good throughput result was attained in less
than 3 generations. After which the best throughput of the each

generation increases slowly. In the first case, the maximum
throughput was attained in 7th generation, after which it
saturated. For the remaining two cases, it was attained midway,
after around 18th generation. Once the algorithm figures out
the best solution, it configures the selected radio parameters
of the SDR. By initiating a data transfer, through nuttcp,
we consistently get the best throughputs achieved by the
algorithm. Both the experiments were run for 30 generations
each, which is certainly not enough to guarantee the global
optimum. It usually only achieves a local optimum. But genetic
algorithms are well known to converge to a global optima
eventually [11] [7].

VI. CONCLUSION

In this paper, we presented a multi-objective genetic al-
gorithm based optimization approach to configure SDRs. By
giving a complete unknown radio environment with a wide
range of input parameters, the algorithm optimizes the radio
configuration of the SDR to result in an optimum wireless
transmission, while achieving the objectives of the evaluation
function. In our experimental system, we observed a 180%
increase in throughput while using the proposed algorithm
when compared to a known manual configuration of the SDR.
Although the time taken to achieve the optimized solutions
is not always feasible for the bootstrapping time of a radio,
the algorithm proves efficient for radios that are non-mobile
and where the wireless conditions do not change too much.
Understandably, if the surroundings change to worsen the
selected configuration, the algorithm needs to be restarted
again.

The proposed algorithm improves the performance of the
wireless link between any two SDRs by optimizing the radio
parameters of frequency, bandwidth, modulation, coding, or
any configurable parameter on which the wireless link depends
on. It is certainly not possible for the user to manually try
the huge solution space of radio configuration or even to
understand how the combination of these parameters influence
the wireless link. Moreover, the algorithm optimizes the radio
properties of both the transmitter and the receiver at the same
time. We also presented ideas to improve the efficiency of the
optimization results and to increase the convergence speed to
determine an optimal parameter set.

The current algorithm works, but can still be made better to
fit any user requirement specifications, by optimizing the GA
parameters, the selection of fitness functions and their weights,
the population selection strategy, and the termination criteria.
Like EVM from the physical layer, which is considered as one
of the fitness functions in our experiments, other parameters
from the MAC/PHY layer can be added to the algorithm to
achieve the desired results. The change in mutation probability
is done manually in each experiment to attain the desired
results. In the future, we plan to change the mutation/crossover
rate from generation to generation through the algorithm,
starting from a higher rate and decreasing it over the evolution.
This would allow the algorithm to try varied solutions before
converging towards a local optimum. We further plan to
incorporate the optimization framework into GNU Radio [14].

The source code of the entire prototype [15], which re-
quires a modified Iris module [16] is available under an open-
source license for further extensions and improvements.

6

REFERENCES

[1] C. Doerr, D. C. Sicker, and D. Grunwald, “Experiences implementing
cognitive radio control algorithms,” in IEEE Global Telecommunica-
tions Conference (GLOBECOM), pp. 4045–4050, Nov. 2007.

[2] “Distributed Evolutionary Algorithms in Python (DEAP).”
Available under https://github.com/DEAP.

[3] P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. Özgül,
T. W. Rondeau, J. Noguera, and L. E. Doyle, “Iris: An Architecture
for Cognitive Radio Networking Testbeds,” vol. 48, pp. 114–122, Sept.
2010.

[4] A. Puschmann, “Open Software Platform for Experimental Cognitive
Radio Research (OSPECORR).”
Available under https://github.com/andrepuschmann/OSPECORR.

[5] A. Puschmann and Z. Shaik, “Building Self-Optimizing Radios using
DEAP.”
Available under https://fosdem.org/2016/schedule/event/deap/.

[6] “An Overview on Genetic Algorithms.”
Available under http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/
hmw/article1.html.

[7] T. Murata and H. Ishibuchi, “MOGA: Multi-Objective Genetic Algo-
rithms,” in IEEE International Conference on Evolutionary Computa-
tion, Nov. 1995.

[8] D. Kozel, “Optimization of digital modulation schemes using evolu-
tionary algorithms.,” GNU Radio Conference, 2015.

[9] “Pareto efficiency.” https://en.wikipedia.org/wiki/Pareto_efficiency.

[10] C. J. Rieser, T. W. Rondeau, C. W. Bostian, and T. M. Gallagher,
“Cognitive radio testbed: further details and testing of a distributed
genetic algorithm based cognitive engine for programmable radios,”
in IEEE Military Communications Conference (MILCOM), vol. 3,
pp. 1437–1443, Oct. 2004.

[11] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, “"cognitive
radios with genetic algorithms: Intelligent control of software defined
radios",” Proceeding of the SDR Technical Conference and Product
Exposition, pp. 93–100, 2004.

[12] T. W. Rondeau, Application of Artificial Intelligence to Wireless Com-
munications. PhD thesis, Virginia Polytechnic Institute and State
University, 2007.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, pp. 182–197, Apr 2002.

[14] “GNU Radio: The Free and Open Software Radio Ecosystem.”
Available under http://gnuradio.org/redmine/projects/gnuradio/wiki.

[15] “Self-Optimization of Software Defined Radios Through Evolutionary
Algorithms.”
Available under https://github.com/andrepuschmann/OSPECORR/tree/
optimizer_rebased.

[16] “IRIS Module for Self-Optimizer.”
Available under https://github.com/andrepuschmann/iris_modules/

commits/optimizer.

7

